Probing beta-lactamase structure and function using random replacement mutagenesis.

نویسندگان

  • T Palzkill
  • D Botstein
چکیده

A new analytical mutagenesis technique is described that involves randomizing the DNA sequence of a short stretch of a gene (3-6 codons) and determining the percentage of all possible random sequences that produce a functional protein. A low percentage of functional random sequences in a complete library of random substitutions indicates that the region mutagenized is important for the structure and/or function of the protein. Repeating the mutagenesis over many regions throughout a protein gives a global perspective of which amino acid sequences in a protein are critical. We applied this method to 66 codons of the gene encoding TEM-1 beta-lactamase in 19 separate experiments. We found that TEM-1 beta-lactamase is extremely tolerant of amino acid substitutions: on average, 44% of all mutants with random substitutions function and 20% of the substitutions are expressed, secreted, and fold well enough to function at levels similar to those for the wild-type enzyme. We also found a few exceptional regions where only a few random sequences function. Examination of the X-ray structures of homologous beta-lactamases indicates that the regions most sensitive to substitution are in the vicinity of the active site pocket or buried in the hydrophobic core of the protein. DNA sequence analysis of functional random sequences has been used to obtain more detailed information about the amino acid sequence requirements for several regions and this information has been compared to sequence conservation among several related beta-lactamases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pentapeptide scanning mutagenesis: random insertion of a variable five amino acid cassette in a target protein.

A new insertion method for probing protein functional organization was developed. The method relies on the random insertion of transposon Tn 4430 and subsequent in vitro deletion of the bulk of the transposon after which a 15 bp insertion remains within the target gene. This results in pentapeptide insertions randomly distributed in the target protein. Characterization of 23 pentapeptide insert...

متن کامل

Mutational replacement of Leu-293 in the class C Enterobacter cloacae P99 beta-lactamase confers increased MIC of cefepime.

The class C beta-lactamase from Enterobacter cloacae P99 confers resistance to a wide range of broad-spectrum beta-lactams but not to the newer cephalosporin cefepime. Using PCR mutagenesis of the E. cloacae P99 ampC gene, we obtained a Leu-293-Pro mutant of the P99 beta-lactamase conferring a higher MIC of cefepime (MIC, 8 microg/ml, compared with 0.5 microg/ml conferred by the wild-type enzym...

متن کامل

Selection and Characterization of b-Lactam–b-Lactamase Inactivator- Resistant Mutants following PCR Mutagenesis of the TEM-1 b-Lactamase Gene

Mechanism-based inactivators of b-lactamases are used to overcome the resistance of clinical pathogens to b-lactam antibiotics. This strategy can itself be overcome by mutations of the b-lactamase that compromise the effectiveness of their inactivation. We used PCR mutagenesis of the TEM-1 b-lactamase gene and sequenced the genes of 20 mutants that grew in the presence of ampicillin-clavulanate...

متن کامل

Directed mutagenesis as a technique to study protein function: application to beta-lactamase.

The function of a protein follows uniquely from its threedimensional structure, which is unambiguously determined by the linear sequence of amino acids. Thus to undertake a systematic study of the relationship between protein structure and function, one would ideally like to be able to alter the structural gene in various ways to encode proteins with novel sequences, structures and functions. V...

متن کامل

Structure-function studies of Ser-289 in the class C beta-lactamase from Enterobacter cloacae P99.

Site-directed mutagenesis of Ser-289 of the class C beta-lactamase from Enterobacter cloacae P99 was performed to investigate the role of this residue in beta-lactam hydrolysis. This amino acid lies near the active site of the enzyme, where it can interact with the C-3 substituent of cephalosporins. Kinetic analysis of six mutant beta-lactamases with five cephalosporins showed that Ser-289 can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 1992